Quand le DRH est un algorithme
Les techniques d’embauche empêchent-elles les préjugés ou les améliorent-ils? Cette question fondamentale est apparue comme un point de tension entre les partisans de la technologie et ses sceptiques, mais l’atteinte de la réponse est plus complexe qu’elle n’apparaît. L’emploi n’est guère un choix, mais plutôt l’aboutissement d’une série de décisions séquentielles plus compactes. Les algorithmes jouent différents rôles tout au long de ce processus: certains orientent les offres d’emploi vers des candidats spécifiques, tandis que d’autres signalent des candidats inactifs. Les outils prédictifs d’analyse et de pointage de crédit reprennent, et la sélection des superviseurs permet d’évaluer les compétences des candidats de nouvelles façons, en utilisant chaque norme et chaque nouvelle donnée. Nombreux sont ceux qui croient que les techniques peuvent aider les producteurs de choix humain à éviter leurs propres préjugés, en ajoutant une cohérence dans l’utilisation des services de procédure. Mais les algorithmes introduisent de nouveaux dangers qui leur appartiennent. Ils peuvent reproduire des biais institutionnels et historiques, amplifiant les désavantages cachés dans des informations telles que la fréquentation d’une université ou d’un collège ou les scores d’évaluation de la performance.
Même si des ensembles de règles éliminent une part de subjectivité dans l’utilisation des services d’approche, les personnes seront toujours grandement impliquées dans la suppression des choix d’embauche. Les différends selon lesquels les techniques «objectives» sont plus justes et plus exactes que les êtres humains faillibles ne savent pas que, dans la plupart des cas, ils sont également impliqués. Pour comprendre les biais liés à l’utilisation des services d’algorithmes et aux moyens de les atténuer, nous devons apprendre comment les systèmes prédictifs fonctionnent à chaque étape de l’approche employante. Bien qu’ils révèlent généralement un élément d’ancrage dans la compréhension du dispositif, les outils utilisés précédemment pouvaient être essentiellement distincts de ceux utilisés ultérieurement. Même les ressources qui semblent effectuer le même travail pourraient dépendre d’informations d’un type totalement différent ou présenter des prophéties de manières très différentes. Notre examen des ressources prédictives tout au long du processus de sélection permet de clarifier ce que font les «algorithmes de recrutement» et où et comment les préjugés peuvent entrer dans le processus. Malheureusement, nous avons constaté que la plupart des services utilisant des algorithmes dériveraient par défaut dans la direction du biais. Même si leur contribution probable à la réduction des préjugés sociaux ne devrait pas être réduite, seules les ressources qui s’attaquent de manière proactive à des disparités encore plus profondes laisseront tout espoir que les technologies prédictives puissent contribuer à encourager l’équité plutôt que l’éroder. L’utilisation des services de l’approche commence effectivement bien avant qu’un demandeur d’emploi soumette un logiciel.
Tout au long de la phase de «recrutement» ou de recrutement, la technologie prédictive aide à annoncer les ouvertures de carrière, à alerter les demandeurs d’emploi sur les placements éventuellement souhaitables et à offrir aux recruteurs des perspectives d’activités concrètes. Pour faire venir des individus, de nombreux employeurs utilisent des systèmes d’annonces algorithmiques et des tableaux de tâches pour arriver probablement aux demandeurs d’emploi les plus «pertinents». Ces systèmes, qui assurent aux employeurs une consommation plus importante des budgets de dépenses d’emploi, font généralement des prophéties très superficielles: ils ne prévoient pas qui peut réussir dans la partie, séminaire mais qui est le plus susceptible de cliquer simplement sur cette offre d’emploi. Ces prévisions peuvent conduire les annonces de tâches à être diffusées d’une manière qui prenne en charge les stéréotypes sexuels et raciaux, même si les organisations n’ont pas ce genre d’intention. Lors de recherches menées conjointement avec des collègues de Northeastern School et de USC, nous avons notamment découvert que des publicités très ciblées sur Facebook ou Twitter pour des placements dans des caisses d’épiceries étaient en réalité montrées à 85% de femmes, bien que Les entreprises ont visité une foule composée à 75% de couleur noire. Cela peut être une situation quintessentielle d’un algorithme reproduisant les biais de la vie réelle, sans la nécessité d’une implication de l’homme. D’autre part, des conseils de travail individualisés, tels que ZipRecruiter, tentent de comprendre instantanément les préférences personnelles des recruteurs et utilisent ces estimations pour recruter des personnes comparables.
A l’instar de Facebook ou de Twitter, ces méthodes de suggestion sont spécialement conçues pour localiser et reproduire les schémas de comportement des consommateurs, en modernisant les estimations de manière dynamique à mesure que les entreprises et les demandeurs d’emploi se rencontrent. Lorsque le processus constate que les employeurs se connectent plus fréquemment avec des hommes blancs et brillants, il peut très bien localiser des mandataires pour les caractéristiques des personnes (par exemple, séminaire devenir Jared ou participer à une crosse au lycée) et reproduire cette conception. Ce type d’impact indésirable peut avoir lieu sans formation explicite, et pire, sans reconnaissance individuelle. Traquer des algorithmes ne sera probablement pas une surface d’imagination pour la plupart d’entre nous chaque fois qu’ils pensent «algorithme d’embauche». Cependant, les décisions informatisées prises au début de la phase à partir de l’entonnoir employé sont très répandues. À titre d’exemple, l’instrument mis au rebut par Amazon sur le marché en ligne pour les filles défavorisées n’était pas un outil de variété pour évaluer des personnes réelles, mais un outil permettant de révéler les personnes inactives que les employeurs pouvaient obtenir. Le repérage d’algorithmes ne permet pas nécessairement de décliner ouvertement les personnes, mais comme le dit Pauline Kim, juriste, «ne pas dire aux individus leur chance d’emploi est un obstacle très efficace» pour les personnes à la recherche d’un emploi. Ces outils peuvent ne pas toujours être efficaces pour les lignes de commande dystopiques, mais ils jouent néanmoins un rôle essentiel pour déterminer qui a accès aux services de procédure par quelque moyen que ce soit.